
International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 44

Transparency in Remote Method Invocation (RMI)

for Distributed Systems: Middleware Layer

D.Madhavi

Assistant Professor, Andhra Loyala Institute of Engineering and Technology, India.

Abstract – Remote Method Invocation (RMI) is a mechanism

that allows objects located in a different computers in a

computer network to interact with each other. The main goal of

RMI is to provide the full transparency regarding Distribution.

This article gives the overall view of the working procedure of

Remote Method Invocation and how it aims to be distribution

transparency. Achieving distribution transparency is not an easy

task in a distributed systems but this can be done through RMI.

RMI is most important and currently most popular concept that

need to be known by any one because it is used in so many

applications such as internet search engines, social websites,

distributed file systems, various mailing systems, online groups

etc. This paper demonstrates clearly about RMI and its

Transparency.

Index Terms – RMI, RMI Registry, Distributed Objects, Proxy,

Skeleton, Marshalling.

1. INTRODUCTION

Distributed System is a collection or group of independent or

autonomous systems that appears to its end-users as a single

coherent system. The Structure of Distributed System [1] is

shown in the below Fig. 1. It consists of user applications,

middleware layer and local operating systems. User

applications are presented on top of the middleware layer and

consist of all the distributed system applications run by the

different users. Middleware layer is logically placed in

between user applications and local operating system. It acts

as an interface between distributed applications and local

operating systems. Examples of middleware layer are

CORBA, DCOM etc. local operating systems of different

computers in a distributed system, which is presented at the

lower of all the layers. Different systems in a distributed

system are having different operating system. Operating

system provides its services supported by the middleware

layer.

The three fundamental properties of a Distributed System are

Transparency, Scalability and Openness. Transparency means

hiding of resources, data, location, access, migration,

relocation, replication, network, concurrency, failures

occurred in a distributed system. Among all these distribution

transparency is the important thing which aims to reach goal

of a system. This can be achieved through middleware layer

as shown in the Figure 1. Scalability is the ability of

increasing or decreasing of resources or systems in a

distributed system. It depends up on the capacity of a system

without affecting its services. Openness is the syntaxes and

semantics of a system can be able to open to the developer as

well as user to access the services without knowing how they

are implemented internally even in a heterogeneous

environment.

Figure 1 Structure of Distributed System

RMI is the most important part of distributed system placed in

the middleware layer of it. If any one method that is called by

a client system is not presented in it, but that method

definition is presented in the other system on either client or

system then we need an RMI. RMI is the one such concept

without which the Distributed system is not designed to

provide transparency especially distribution transparency.

This paper discuss about what is the architecture of RMI,

working of RMI, in which layer the RMI is presented in

distributed system and how it is implemented with

advantages.

RMI is a mechanism to allow access to the remote object

which is presented on another remote machine connected in a

network within a distributed system. Java RMI is quite similar

to RPC (Remote Procedure Call). i.e RMI is java’s version of

RPC with its object orientated concepts. Basically RMI is

only a version of CORBA (Common Object Request Broker

Architecture) by supporting its remote object invocation

concepts where as RPC does not allow object invocation it

only calls the procedures which are presented on remote

machines. The protocols used for implementation of RMI

systems are JAVA RMI, CORBA IDL (Interface Definition

Language), Microsoft DCOM (Distributed Component Object

Model) /COM+, SOAP (Simple Object Access Protocol).

Java RMI is implemented only in java object oriented

concepts. CORBA uses CDL (Common Definition Language)

[2, 3] to represents, call, reference remote objects and to

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 45

support object oriented concepts. Sun Micro systems

developed a DCOM model for supporting RMI. SOAP

protocol presents RMI on top of HTTP. It is a part of

middleware layer as shown in the Figure 2.

Figure 2 RMI is in Middleware Layer

Distributed Systems uses Request-Reply protocol [2] for

client-server communication as shown in the Figure 3. It is a

part of middleware layer. This protocol supports three

methods named as doOperation, getRequest and sendReply. It

provides certain delivery guarantees. RMI passes a remote

object reference in the request message and that method is

invoked on the remote system.

Figure 3 Request-Reply Communication

Multithreading concept is used to invoke a method on a

remote object presented in remote machine. In practice, RMI

is the client to hold references to remote objects that it can

invoke methods on. These references should behave just like a

local objects, but when invoked dispatch the method

invocation to the remote object. Because need to refer to both

and a method now, not just a function so it sends an object id

across the socket, then the method and the arguments. The

server then dispatches the method to the remote object based

on id and method name, interface name in which the method

defined. The flow of Communication mechanism during the

execution of a remote method for RMI from client to server is

Client  Interface  Stub  Skeleton  Interface

 Server

The primary advantages of Java RMI [4, 5] are

 Object Oriented

 Mobile behavior

 Parallel computing

 Distributed Computing

 Write once run anywhere

 Easy to develop and use

 Dynamic class loading is very powerful

 Parallel computing

 Distributed Garbage Collection

 Security and Safety

 Connections to Legacy systems using JINI

The Disadvantages of Java RMI are

 Insecure while dynamic class loading

 Challenging and hard to implement call back

mechanism over Internet.

 Overhead of Object serialization, marshalling and

unmarshalling.

 Supports only JAVA RMI.

2. RELATED WORK

The first Java RMI [7] core library supports built-in

functionality for distributed computing. Basically distributed

systems are built on hertogenious environment so that they

support first versions of java release, as time progresses new

releases of java supports CORBA through RMI-IIOP. Later

Sun Microsystems supports distribution capabilities for java

and introduces Jini, in 1998 by Apache River. It supports

secure distributed applications and services which are

facilitated by Jini Extensible Remote Invocation Protocol

(JERI) using JavaSpaces [9]. JERI is not equal to RMI but

systemically similar to RMI. River also targeted towards to

grid computing. It allows the Java Remote Method Protocol.

Cajo library to build distributed java virtual machines and

uses RMI. It reduces network traffic, controls and agent

objects exchanged between virtual machines. It uses multicast

communication.

CloudSNAP [8] is a platform for decentralized systems on

J2EE web applications. DAMON (Aspect Oriented

Interception Middleware) is used to achieve distribution of

objects. It uses the underlying architecture as P2P Network. It

is better used for Cloud Enterprise web applications.

P2P-MPI [10] is a project to support Parallel P2P grid

computing. This framework extends for resource sharing and

Message passing interface Infrastructure. So that acts as a

computational grid.

JXTA protocol provides definition and library to build P2P-

based distribution of java objects. JXTA is independent.

All of the above does not provide full efficient transparent

integration of simple object oriented approach but P2P RMI

[6] provides this full distribution transparency.

3. PORPOSED MODELLING

The architecture of RMI is shown in the below Fig.2. Before

performing the RMI operation specified in the architecture,

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 46

first bind a client to a server is performed as shown in the

Figure 4.

Figure 4 Binding a Client to the Server System

Binding a client system to the server is done in the three steps.

They are

Step 1: Server must register the object’s interface at RMI

registry.

Step 2: If client wants to access the remote object then it

looks up in the RMI registry.

Step 3: After getting the object’s interfaces implementations

into the client’s address space, the actual RMI mechanism is

taken place.

The RMI architecture and have the following steps as shown

in the Figure 5.

Figure 5 Simple Model / Architecture of RMI

Step 1: The server first registers their interfaces at the RMI

registry i.e binding a client to a server.

Step 2: The client machine which it wanted to invoke a

method on remote machine can generate the stub. It has

objects id, method name, server reference be marshaled by the

client stub is called the proxy.

Step 3: The proxy provides an implementation of interface as

the server object which marshals method invocations into

messages, sends into the target, waits and unmarshals reply

messages to return the result of the method invocation to the

client.

Step 4: Then proxy is converted that message into the

required protocol format used for communication such as

HTTP, SOAP… etc, this process of converting method

arguments to message formats suitable for transmission in a

computer network is called marshalling.

Step 5: After marshalling the data is given to Client

Operating System which converts the data into binary format

understandable by the Physical Layer.

Step 6: Server Operating System takes binary data and

reformat and hand it over to the Server Stub called Skeleton.

Step 7: Skeleton unmarshals requests to proper method

invocations at the object’s interface at the server.

Step 8: The dispatcher selects the appropriate method in the

Skeleton. Dispatcher has Object in which methods are

defined.

Step 9: After Server does work, it returns result to the

Skeleton.

Step 10: The Skeleton also marshals replies and forwards

replies to the client-side Operating System through Computer

network.

Step 11: Client OS takes and handover it to the Proxy, then it

unmarshals the data

Step 12: The unmarshaled data is handover to the requested

Client process.

The RMI structure offers full transparency regarding

distribution.

Objects can be implemented in different ways. There are

various categories of objects are there named as

 Compile time Objects

 Runtime Objects

 Distributed Objects

 Remote Objects

 Persistent Objects

 Transient Objects

3.1 Compile-Time Objects:

o Compile time objects are directly related to language

level objects supported by Java and C++.

o The most obvious form of objects are known as

compile time objects.

o They are easy to build distributed system

applications using compile time objects.

o Drawback of compile time objects is dependent on

particular programming language.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 47

o In compile time objects, objects are defined as an

instance of a class.

3.2 Runtime Objects

o The implementation of Runtime objects are left

open.

o This approach to Object-based Distributed Systems

allows an application to be constructed from objects

written in multiple languages.

o This approach may use object adapters that acts as

wrappers that give implementations of an object

appearance.

3.3 Distributed Objects

o It is an Object which publishes its interface on other

machines

o The characteristic of the Distributed object is that

their state is not distributed.

o It is constructed during explicitly runtime

o It is followed in many object based distributed

systems, which are independent of programming

languages.

o Applications can be constructed from objects written

in multiple languages.

3.4 Remote Objects

o It is a distributed object whose state is encapsulated

(Objects state is not distributed here).

o Objects implementation is left open. Object methods

are invoked from remote systems.

o The remote object is based on id and method name.

3.5 Persistent Objects

o It continues to exist even if it is currently not

contained in the address space of a server process.

o These objects are not dependent on its current server.

o Server manages this object then it stores into

secondary memory and exit.

3.6 Transient Objects

o This object exists only as long as the server that

manages the object.

Basically RMI is of two types they are Static RMI and

Dynamic RMI.

Static RMI:

 After binding of a client to a server, it can invoke the

object’s methods through proxy

 The preferred interface definitions referred to as

static invocation. Here interfaces of an object are

known when the client application is being

developed.

 If interfaces can change then the client application

must be recompiled before it can make use of new

interfaces.

 The preferred interface definitions are presented in

CORBA’s IDL.

Dynamic RMI:

 It can be able to compose a method invocation at

runtime. It can also refer to as dynamic invocation.

 An application selects at runtime which method it

will invoke at a remote object.

There is a drawback to RMI, it provides inherently

synchronous nature. Even though it contributes to hiding the

communication in Distributed System unfortunately this

mechanism is not always appropriate. Client is blocked until

its requests have been processed. There is a necessicity of

using another mechanism called Message Oriented

communication to avoid this drawback.

4. RESULTS AND DISCUSSIONS

RMI effectuation generates stub at client side and skeleton at

server side on which actual implementation of an interface is

defined. In the process of RMI implementation, Client

machine uses RMIregistry as in Figure 4. to bind to a

particular server in a network of Distributed System. A result

of implementation of RMI using an object oriented language

known as JAVA is shown in this section.

Consider a simple arithmetic operations whose method

definitions are not available on the client system then it can

invoke those required methods which are existed at server

machine or another machine which is placed remotely in a

Distributed System. Then this scenario uses the RMI

mechanism. This paper gives an example for addition,

subtraction, multiplication and division operations, whose

method definitions are found on another machine.

The Figure 6 Shows the three different Java files named as

ClientRMI.java, to represent client side code,

ServerRMI.java, represents server side object oriented code

and InterfaceRMI.java, which specifies the interface

definition.

Figure 6 Creation of Client, Server and Interface Files

After creation of all the java files there is a need to compile all

the created java files using Java compiler named as Javac. It

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 48

creates .class files for all the java files as shown in the below

Figure 7.

Figure 7 Compilation of .java Files

The java compiler compiles all the files and generates the

.class files as shown in below Figure 8.

Figure 8 Creation of .class Files

RMIRegistry is started on a system which generates the Stub

class named as ‘ServerRMI_Stub.class’ for the interface as

shown in the below figures Figure 9 and Figure 10 and as a

result of RMI registry the service of registry started by

opening a new command window as shown in Figure 11.

Figure 9 Generation of Stub Class, ServerRMI_Stub.class

Figure 10 Executing the Command start rmiregistry

Figure 11 Starting RMI Registry Service

Open a new separate environments for both server and client

side execution of programs by running server and client

program consecutively as shown in the below Figure 12 and

Figure 13.

Binding a client to a server can be done by executing rmi

registry. After that execution of server program can be done

Figure 12.

Figure 12 Execution of ServerRMI

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 49

Figure 13 Execution of ClientRMI

5. CONCLUSION

Remote Method Invocation is presented in the Middleware

layer of a Distributed System. This layer is heart or central

part of all the systems in a Distributed System. The important

property of distribution transparency is provided by this Layer

with the help of RMI. That is implementation of transparency

is done in middleware layer through RMI and interoperability

issues are also provided as discussed in the above section of

this paper. Transparency is the main goal of RMI. Without

transparency there is no Distributed System. It places the

major role of design and implementation of any Distributed

System. Achieving full transparency is not possible but

maximum extent it will be achieved depending upon the

application.

REFERENCES

[1] Andrew S. Tanenbaum, Maarten Van Steen, “Distributed Systems:

Principles and Paradigms”, Eastern Economy Edition, PHI Learning
Private Limited, Second Edition. ISBN-978-81-203-3498-4.

[2] George Coulouris, Jean Dollimore and Tim Kindberg, “Distributed

Systems Concepts and Design”, Pearson education, Fourth Edition.
[3] Hanumant Pawar, Sujeet Patil, Sourabh Karche, Udit Upadgayay,

Mahesh Channaram, “Distributed Object Computing Using Java

Remote Method Invocation”, International Journal of Emerging
Research and Technology, Volume 3, Issue 5, May 2015, PP 68-76,

ISSN 2349-4395 (Print) and ISSN 2349-4409 (Online).

[4] Integrated Cloud Applications & Platform Services, “Java Remote
Method Invocation- Distributed Computing for Java”, ORACLE

Technology Network, Technologies.

[5] Kapep, Rafalmag, Rob Lachlan, “Benefits and Disadvantages of using
java rmi”, Stack Overflow Community, Stack Exchange Inc., Licensed

under cc by-sa3.0, 6th June 2014, 30th Oct 2012, 26th Feb 2016

respectively.

[6] Thomas Zink, Oliver Haase, Jurgen Wasch and Marcel Waldvogel,

“P2P-RMI: Transparent Distribution of remote java Objects”,

International Journal of Computer Networks & Communications
(IJCNC) Vol. 4, No. 5, September 2012.

[7] Ann Wollrath, Roger Riggs, and Jim Waldo, “A Distributed Object

Model for the JAVA System”, USENIX Computing Systems, 9, 1996.
[8] Ruben Mondejar, Pedro Garcia-Lopez, Carles Pairot, and Lluis Pamies-

Juarez, “CloudSNAP: A Transparent Infrfastructure for Decentralized

web deployment using Distributed Interception”, Future Generation
Computer Systems, (0), 2011.

[9] Qusay H.Mamoud, “Getting Started With JavSpaces Technology:

Beyond Conventional Distributed Programming Paradigms”, July 2005.

[10] Stephane Genaud and Choopan Rattanapoka,”A Peer-to-Peer

Framework for Message Passing Parallel Programs”, Advances in
Parallel Computing, Volume 17, pages 118-147. IOS Press, June 2009.

